LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Macro-model of PV module and its application for partial shading analysis

Photo by boxedwater from unsplash

Under partially shaded conditions (PSC), a photovoltaic (PV) array takes on more complex characteristics. It is very difficult and utterly necessary for PV system designers to understand and predict them.… Click to show full abstract

Under partially shaded conditions (PSC), a photovoltaic (PV) array takes on more complex characteristics. It is very difficult and utterly necessary for PV system designers to understand and predict them. Other than the prevailing methodology of solving a set of non-linear equations, the proposed methodology focuses on three key points of short circuit, MPP and open circuit. Besides, its V-I curve is split into three regions and replaced by three asymptote lines. From this viewpoint, this paper presents a novel Psim-based piece-wise linear macro-model whose circuit parameter values are determined based on the foregoing three key points. The novel model, compared with the other published models, is characterised by short running time, relative high accuracy, and reliable unique solution. This model avoids the computational complexity and convergence issue. Furthermore, based on the novel model, an optimising configuration-simulation model is presented for PV system designers to optimise PV array configurations under several given shaded patterns. Two new concepts of power and voltage reducing rate shall be introduced to estimate the PSC effect. The novel model and formulas, therefore, shall provide a good solution for studying the behavior of a large-scale PV array in a complex scenario.

Keywords: methodology; novel model; macro model; module application; model; model module

Journal Title: Iet Renewable Power Generation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.