LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wide area oscillation damping controller for DFIG using WAMS with delay compensation

Photo from wikipedia

Several studies have reported the improvement of system stability with a doubly-fed induction generator (DFIG) based wind turbines. Due to the remote location of DFIG, the local signals measured may… Click to show full abstract

Several studies have reported the improvement of system stability with a doubly-fed induction generator (DFIG) based wind turbines. Due to the remote location of DFIG, the local signals measured may not contain the complete oscillation information of the power system. This study describes an optimisation enabled wide area damping control (WADC) for DFIG to mitigate both local and inter area oscillations. Wide area measurement systems (WAMSs) which include phasor measurement units and synchrophasors are used for a centralised controller for damping inter-area and local oscillatory modes. The proposed damping controller parameters are optimised along with the local power system stabiliser settings for maximising the impact on system modal damping. The challenging shortcoming of WAMS based controller is the variable communication latency which can adversely affect the controller if not accounted in the controller design process. The proposed WADC algorithm addresses this issue and compensates for the delayed and time stamped error signals. The variable latencies are normalised in the optimisation algorithm in the design of controller parameters. The proposed algorithm is verified with transient simulation in PSCAD/EMTDC for the most severe three-phase faults. A set of comprehensive case studies are performed to analyse the effectiveness of the proposed algorithm for the noisy, delayed communication signals.

Keywords: dfig; system; area; wide area; controller; damping controller

Journal Title: IET Renewable Power Generation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.