LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of self-regulatory network motifs in reverse engineering gene regulatory networks using microarray gene expression data.

Photo from wikipedia

Gene Regulatory Networks (GRNs) are reconstructed from the microarray gene expression data through diversified computational approaches. This process ensues in symmetric and diagonal interaction of gene pairs that cannot be… Click to show full abstract

Gene Regulatory Networks (GRNs) are reconstructed from the microarray gene expression data through diversified computational approaches. This process ensues in symmetric and diagonal interaction of gene pairs that cannot be modelled as direct activation, inhibition, and self-regulatory interactions. The values of gene co-expressions could help in identifying co-regulations among them. The proposed approach aims at computing the differences in variances of co-expressed genes rather than computing differences in values of mean expressions across experimental conditions. It adopts multivariate co-variances using principal component analysis (PCA) to predict an asymmetric and non-diagonal gene interaction matrix, to select only those gene pair interactions that exhibit the maximum variances in gene regulatory expressions. The asymmetric gene regulatory interactions help in identifying the controlling regulatory agents, thus lowering the false positive rate by minimizing the connections between previously unlinked network components. The experimental results on real as well as in silico datasets including time-series RTX therapy, Arabidopsis thaliana, DREAM-3, and DREAM-8 datasets, in comparison with existing state-of-the-art approaches demonstrated the enhanced performance of the proposed approach for predicting positive and negative feedback loops and self-regulatory interactions. The generated GRNs hold the potential in determining the real nature of gene pair regulatory interactions.

Keywords: regulatory networks; self regulatory; gene; microarray gene; gene expression; gene regulatory

Journal Title: IET systems biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.