We present high-resolution rotational spectroscopy of the two conformers of 3-methylbutyronitrile (C_4H_9CN). Spectra were taken between 2 and 24 GHz by means of Fourier transform microwave spectroscopy. Spectra between 36… Click to show full abstract
We present high-resolution rotational spectroscopy of the two conformers of 3-methylbutyronitrile (C_4H_9CN). Spectra were taken between 2 and 24 GHz by means of Fourier transform microwave spectroscopy. Spectra between 36 and 403 GHz were recorded by means of frequency modulated (FM) absorption spectroscopy. The analysis yields precise rotational constants and higher order distortion constants, as well as a set of ^(14)N nuclear electric quadrupole coupling parameters for each of the two conformers. In addition, quantum chemical calculations were performed in order to assist the assignments. Frequency calculations yield insight into the vibrational energy structure of the two conformers, from which partition functions and vibrational correction factors are determined. These factors are used to determine experimentally and computationally the energy difference between the two conformers, which is revealed to be negligible. Overall, this study provides precise spectroscopic constants for the search of 3-methylbutyronitrile in the interstellar medium. In particular, this molecule is a perfect test case for our knowledge of branched molecule formation in space.
               
Click one of the above tabs to view related content.