LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spectral index−mass accretion rate correlation and evaluation of black hole masses in AGNs 3C 454.3 and M 87

Photo from wikipedia

We present the discovery of correlations between the X-ray spectral (photon) index and mass accretion rate observed in active galactic nuclei (AGNs) 3C~454.3 and M87. We analyzed spectral transition episodes… Click to show full abstract

We present the discovery of correlations between the X-ray spectral (photon) index and mass accretion rate observed in active galactic nuclei (AGNs) 3C~454.3 and M87. We analyzed spectral transition episodes observed in these AGNs using Chandra, Swift, Suzaku, BeppoSAX, ASCA and RXTE data. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index (Gamma) and normalization of the seed component which is proportional to a disk mass accretion rate Mdot. We developed an analytical model that shows that Gamma of the BH emergent spectrum undergoes an evolution from lower to higher values depending on Mdot. To estimate a BH mass in 3C~454.3 we consider extra-galactic SMBHs NGC~4051 and NGC~7469 as well as Galactic BHs Cygnus X--1 and GRO~J1550--564 as reference sources for which distances, inclination angles are known and the BH masses are already evaluated. For M87 on the other hand, we provide the BH mass scaling using extra-galactic sources (IMBHs: ESO 243-49 HLX 1 and M 101 ULX--1) and Galactic sources (stellar mass BHs: XTE J1550-564, 4U 1630-472, GRS 1915+105 and H 1743-322) as reference sources. Application of the scaling technique for the photon index-Mdot correlation provides estimates of the BH masses in 3C 454.3 and M87 to be about 3.4x10^9 and 5.6 x10^7 solar masses, respectively. We also compared our scaling BH mass estimates with a recent BH mass estimate of M_{87}=6.5x 10^9 M_{\odot} made using the {Event Horizon Telescope} which gives an image at 1.3 mm and is based on the angular size of the `BH event horizon'. Our BH mass estimate in M87 is at least two orders of magnitude lower than that made by the EHT team.

Keywords: accretion rate; index; mass accretion; mass

Journal Title: Astronomy and Astrophysics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.