LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stellar laboratories

Photo from academic.microsoft.com

Accurate atomic data is an essential ingredient for the calculation of reliable non-local thermodynamic equilibrium (NLTE) model atmospheres that are mandatory for the spectral analysis of hot stars. We aim… Click to show full abstract

Accurate atomic data is an essential ingredient for the calculation of reliable non-local thermodynamic equilibrium (NLTE) model atmospheres that are mandatory for the spectral analysis of hot stars. We aim to search for and identify for the first time spectral lines of copper (atomic number Z = 29) and indium (Z = 49) in hot white dwarf (WD) stars and to subsequently determine their photospheric abundances. Oscillator strengths of Cu IV - VII were calculated to include radiative and collisional bound-bound transitions of Cu in our NLTE model-atmosphere calculations. Oscillator strengths of In IV - VI were compiled from the literature. We newly identified 1 Cu IV, 51 Cu V, 2 Cu VI, and 5 In Vlines in the ultraviolet (UV) spectrum of DO-type WD RE 0503-289. We determined the photospheric abundances of 9.3 X 10**-5 (mass fraction, 132 times solar) and 3.0 X 10**-5 (56 600 times solar), respectively; we also found Cu overabundances in the DA-type WD G191-B2B (6.3 X 10**-6, 9 times solar). All identified Cu IV - VI lines in the UV spectrum of RE 0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths. With the detection of Cu and In in RE 0503-289, the total number of trans-iron elements (Z > 28) in this extraordinary WD reaches an unprecedented number of 18.

Keywords: times solar; oscillator strengths; stellar laboratories; number; 0503 289

Journal Title: Astronomy and Astrophysics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.