Context. Many C-, O-, and H-containing complex organic molecules (COMs) have been observed in the interstellar medium (ISM) and their formation has been investigated in laboratory experiments. An increasing number… Click to show full abstract
Context. Many C-, O-, and H-containing complex organic molecules (COMs) have been observed in the interstellar medium (ISM) and their formation has been investigated in laboratory experiments. An increasing number of recent detections of large N-bearing COMs motivates our experimental investigation of their chemical origin. Aims. We investigate the potential role of acetonitrile (CH3CN) as a parent molecule to N-bearing COMs, motivated by its omnipresence in the ISM and structural similarity to another well-known precursor species, CH3OH. The aim of the present work is to characterize the chemical complexity that can result from vacuum UV photolysis of a pure CH3CN ice and a more realistic mixture of H2O:CH3CN. Methods. The CH3CN ice and H2O:CH3CN ice mixtures were UV irradiated at 20 K. Laser desorption post ionization time-of-flight mass spectrometry was used to detect the newly formed COMs in situ. We examined the role of water in the chemistry of interstellar ices through an analysis of two different ratios of H2O:CH3CN (1:1 and 20:1). Results. We find that CH3CN is an excellent precursor to the formation of larger nitrogen-containing COMs, including CH3CH2CN, NCCN/CNCN, and NCCH2CH2CN. During the UV photolysis of H2O:CH3CN ice, the water derivatives play a key role in the formation of molecules with functional groups of: imines, amines, amides, large nitriles, carboxylic acids, and alcohols. We discuss possible formation pathways for molecules recently detected in the ISM.
               
Click one of the above tabs to view related content.