The impairment of intracellular calcium homeostasis plays an essential role during ischemia-reperfusion injury. Calcium release from sarcoplasmic reticulum which is triggered by myocardial ischemia is mainly mediated by ryanodine receptors.… Click to show full abstract
The impairment of intracellular calcium homeostasis plays an essential role during ischemia-reperfusion injury. Calcium release from sarcoplasmic reticulum which is triggered by myocardial ischemia is mainly mediated by ryanodine receptors. Dantrolene sodium is a ryanodine receptor antagonist. The objective of the present study was to evaluate the in-vivo impact of dantrolene sodium on myocardial ischemia-reperfusion injury in swine models. An in vivo, experimental trial comparing 10 experimental animals which received dantrolene sodium with 9 control swine models was conducted. Their left anterior descending coronary artery was temporarily occluded for 75 minutes via a vessel tourniquet, which was then released. Myocardial reperfusion was allowed for 24 hours. Dantrolene was administered at the onset of the reperfusion period and levels of troponin, creatine phosphokinase and CKMB between the two groups were compared. Additionally, various other hemodynamic parameters and left ventricular morphology and function were examined. There were significantly lower values of troponin, creatine phosphokinase and CKMB in the dantrolene group indicating less ischemia-reperfusion injury. Moreover, the post-ischemic cardiac index was also greater in the dantrolene group, whereas viable myocardium was also better preserved. In conclusion, the in vivo cardioprotective role of dantrolene sodium against ischemia-reperfusion injury in swine models was indicated in this study. Therefore, dantrolene sodium administration could be a promising treatment against ischemia-reperfusion injury in humans. However, large randomized clinical studies should be firstly carried out to prove this hypothesis.
               
Click one of the above tabs to view related content.