LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Preventive Model for Hamstring Injuries in Professional Soccer: Learning Algorithms.

Photo from wikipedia

Hamstring strain injury (HSI) is one of the most prevalent and severe injury in professional soccer. The purpose was to analyze and compare the predictive ability of a range of… Click to show full abstract

Hamstring strain injury (HSI) is one of the most prevalent and severe injury in professional soccer. The purpose was to analyze and compare the predictive ability of a range of machine learning techniques to select the best performing injury risk factor model to identify professional soccer players at high risk of HSIs. A total of 96 male professional soccer players underwent a pre-season screening evaluation that included a large number of individual, psychological and neuromuscular measurements. Injury surveillance was prospectively employed to capture all the HSI occurring in the 2013/2014 season. There were 18 HSIs. Injury distribution was 55.6% dominant leg and 44.4% non-dominant leg. The model generated by the SmooteBoostM1 technique with a cost-sensitive ADTree as the base classifier reported the best evaluation criteria (area under the receiver operating characteristic curve score=0.837, true positive rate=77.8%, true negative rate=83.8%) and hence was considered the best for predicting HSI. The prediction model showed moderate to high accuracy for identifying professional soccer players at risk of HSI during pre-season screenings. Therefore, the model developed might help coaches, physical trainers and medical practitioners in the decision-making process for injury prevention.

Keywords: preventive model; soccer; injury; professional soccer; soccer players

Journal Title: International journal of sports medicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.