Hypoxia-inducible factors-1α (HIF-1α) involves in redox reaction. Considering the role of reactive oxygen species (ROS) in platelet function, whether it regulates platelet function remains unclear. Using an inhibitor of HIF… Click to show full abstract
Hypoxia-inducible factors-1α (HIF-1α) involves in redox reaction. Considering the role of reactive oxygen species (ROS) in platelet function, whether it regulates platelet function remains unclear. Using an inhibitor of HIF prolyl hydroxylase IOX-2, we intend to investigate its effect on platelet function. Human platelets were treated with IOX-2 (0, 10, 25, and 50 M) followed by analysis of platelet aggregation, granule secretion, receptor expression, platelet spreading or clot retraction. Additionally, IOX-2 (10 mg/kg) was injected intraperitoneally into mice to measure tail bleeding time and arterial thrombosis. IOX-2 significantly inhibited collagen-related peptide (CRP, 0.25 μg/ml) or thrombin (0.03 U/ml)-induced platelet aggregation and ATP release dose dependently without affecting P-selectin expression and the surface levels of glycoprotein (GP)Ib, GPVI or IIb3. In addition, IOX-2-treated platelets presented significantly decreased spreading on fibrinogen or collagen and clot retraction. Moreover, IOX-2 administration into mice significantly impaired the in vivo hemostatic function of platelets and arterial thrombus formation without affecting the number of circulating platelets and coagulation factor (FVIII and FIX). Further, IOX-2 significantly upregulated HIF-1 in platelets, decreased ROS generation and downregulated NOX1 expression. Finally, IOX-2 increased the phosphorylation level of VASP (Ser157/239), and inhibited the phosphorylation of p38 (Thr180/Tyr182), ERK1/2 (Thr202/Tyr204), AKT (Thr308/Ser473) and PKC (Thr505) in CRP- or thrombin-stimulated platelets. In conclusion, inhibition of HIF prolyl hydroxylase modulates platelet function and arterial thrombus formation, possibly through upregulation of HIF-1α expression and subsequent inhibition of ROS generation, indicating that HIF-1α might be a novel target for the treatment of thrombotic disorders.
               
Click one of the above tabs to view related content.