LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unconventional Conjugated Polymers Derived from a Common Set of trans-Enediyne Monomers

Photo from wikipedia

This account describes our recent efforts in the design and synthesis of several series of unconventional conjugated polymers derived from a common set of trans-enediyne (tEDY) monomers. The journey started… Click to show full abstract

This account describes our recent efforts in the design and synthesis of several series of unconventional conjugated polymers derived from a common set of trans-enediyne (tEDY) monomers. The journey started with a failed attempt, through acyclic diene metathesis of triene monomers, to prepare soluble polyacetylenes (PAs) having cross-conjugated side-groups on alternate double bonds along the main chain. At this seemingly dead end of the project, we found that the tEDY intermediates leading to triene monomers could undergo alkyne metathesis to generate soluble polydiacetylenes (PDAs). Such acyclic enediyne metathesis represents the first example of a solution synthesis of PDAs, in contrast to the conventional topochemical methods. By applying Glaser–Hay-type reaction conditions with selected tEDY monomers, polytriacetylenes were smoothly obtained; these possessed aromatic units directly attached to the polymer main chains, which significantly affected the electronic properties of the polymers. Furthermore, through hydroboration of the tEDY monomers, ‘boron-doped’ polyacetylenes (BDPAs) were prepared that can be considered as PAs with every fourth double bond replaced with a boron atom. These BDPAs represent the first boron main-chain conjugated polymers lacking aromatic units along the backbone, potentially enhancing electronic delocalization along the main chain.

Keywords: unconventional conjugated; polymers derived; conjugated polymers; common set; derived common; set trans

Journal Title: Synlett
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.