LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Effect of Gamma-Ray Irradiation on the Physical, Mechanical, and Morphological Characteristics of PVA-Collagen-Chitosan as a Guided Tissue Regeneration (GTR) Membrane Material.

Photo by neom from unsplash

OBJECTIVE  The aim of this study was to evaluate the effect of gamma-ray irradiation on the physical, mechanical, and morphological characteristics of the polyvinyl alcohol (PVA)-collagen-chitosan membranes as a guided… Click to show full abstract

OBJECTIVE  The aim of this study was to evaluate the effect of gamma-ray irradiation on the physical, mechanical, and morphological characteristics of the polyvinyl alcohol (PVA)-collagen-chitosan membranes as a guided tissue regeneration membrane material. MATERIAL AND METHOD  The membrane was fabricated by mixing PVA, collagen, and chitosan using the film casting method. PVA-collagen-chitosan membranes were irradiated with various radiation dose (0, 15, and 25 kGy). Furthermore, it is characterized using Fourier-transform infrared (FTIR) for functional group identification, morphological test was performed using scanning electron microscopy (SEM), and mechanical properties (i.e., tensile strength and elongation) were evaluated using universal testing machine and swelling studies. STATISTICAL ANALYSIS  Statistical analysis was performed based on analysis of variance and post hoc with p-value < 0.05. RESULT  The FTIR spectrum shows various peaks of functional groups from the PVA-collagen-chitosan membrane. The result of the statistical analysis show changes in tensile strength (p = 0.0004) and membrane elongation (p = 0.000451) at different radiation doses of 0, 15, and 25 kGy. The membrane absorption obtains p-value of 0.0193, while the SEM results show that the PVA-collagen-chitosan membrane homogeneously mixed. CONCLUSION  There is an effect of gamma-ray irradiation on tensile strength, elongation, and water absorption of the membranes. Increasing the radiation dose increases the value of tensile strength, while elongation and absorption of the membrane decrease. The PVA-collagen-chitosan membrane has the potential to develop as an alternative membrane for guided tissue regeneration.

Keywords: collagen chitosan; pva collagen; gamma ray; effect gamma; membrane

Journal Title: European journal of dentistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.