Maritime search and rescue (SAR) operations, conducted for rendering aid to the victims in need of help at sea, play a crucial role in dropping the number of causalities. Therefore,… Click to show full abstract
Maritime search and rescue (SAR) operations, conducted for rendering aid to the victims in need of help at sea, play a crucial role in dropping the number of causalities. Therefore, it is of high importance to organize SAR operations properly. In this paper, we compose a hybrid methodology which combines optimization and simulation to allocate SAR helicopters. First, we build an integer linear programming (ILP) model to provide an effective deployment plan and use it as an input to a simulation model which includes constraints that the ILP model cannot tackle. Next, using a rule-based algorithm, we generate alternative solutions and seek better plans that exist in the vicinity of the ILP model solution. We perform our methodology on the historical incident data in the Aegean Sea region. Results show that the hybrid methodology we adopted leads to a more effective utilization of resources than the optimization model alone.
               
Click one of the above tabs to view related content.