LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Simulation of Failure of Rock-Like Material Subjected to Compressive Loads Using Improved Peridynamic Method

Photo by livvie_bruce from unsplash

AbstractA novel bond-based peridynamic method is proposed to investigate the initiation, propagation, and coalescence of cracks in brittle rock materials subjected to compressive loads. To simulate the failure of brittle… Click to show full abstract

AbstractA novel bond-based peridynamic method is proposed to investigate the initiation, propagation, and coalescence of cracks in brittle rock materials subjected to compressive loads. To simulate the failure of brittle rock materials under compressive loads, tangent bonds are introduced into the bond-based peridynamic theory. By comparing the strain energy with peridynamic energy, the micro-peridynamic parameters can be expressed by the macromechanical parameters of rocks. The novel peridynamic model can solve the problem that the normal bond-based peridynamic theory is limited to constitutive models with a Poisson’s ratio of 1/4 for three-dimensional problems. A program code was compiled to demonstrate the validity of the novel bond-based peridynamic method. It was found that the numerical results of the initiation, propagation, and coalescence of cracks in brittle rock materials subjected to compressive loads are in good agreement with the experimental data.

Keywords: based peridynamic; bond based; compressive loads; subjected compressive; peridynamic method; rock

Journal Title: International Journal of Geomechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.