LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Universal conformal ultrathin dielectrics on epitaxial graphene enabled by a graphene oxide seed layer

Photo by henrylim from unsplash

The amphiphilic nature of graphene oxide (GO) is exploited as a seed layer to facilitate the ultrathin and conformal high-κ metal oxide (MOX) deposition on defect-free epitaxial graphene (EG) by… Click to show full abstract

The amphiphilic nature of graphene oxide (GO) is exploited as a seed layer to facilitate the ultrathin and conformal high-κ metal oxide (MOX) deposition on defect-free epitaxial graphene (EG) by atomic layer deposition (ALD). Three different high-κ metal oxides (Al2O3, HfO2 and TiO2) with various thicknesses (4–20 nm) were grown on ultrathin (1.5 nm) GO seed layers on EG. The quality of such dielectrics was examined by fabricating various metal-insulator-graphene (MIG) type devices. For MIG tunnel devices, on-off ratios of 104 and 103 were obtained for 4 nm Al2O3 and HfO2 dielectric layers, respectively. Additionally, no defect/trap assisted conduction behavior was observed. Graphene field effect transistors (GFETs) with bi-layer metal oxide stack (6 nm TiO2/14 nm HfO2) demonstrated a peak on-state current of 0.16 A/mm, an on-resistance of 6.8 Ω mm, an Ion/Ioff ratio of ∼4, and a gate leakage current below 10 pA/mm at Vds = 1 V and Vgs = 4 V. Capacitance-voltage measurement of the same GFETs exhibited a l...

Keywords: graphene oxide; seed layer; seed; graphene; epitaxial graphene

Journal Title: Applied Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.