LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the domain size effect of thermal conductivities from equilibrium and nonequilibrium molecular dynamics simulations

Photo from wikipedia

Equilibrium molecular dynamics (EMD) simulations with the Green-Kubo formula and nonequilibrium molecular dynamics (NEMD) simulations with the Fourier's Law are two widely used methods for calculating thermal conductivities of materials.… Click to show full abstract

Equilibrium molecular dynamics (EMD) simulations with the Green-Kubo formula and nonequilibrium molecular dynamics (NEMD) simulations with the Fourier's Law are two widely used methods for calculating thermal conductivities of materials. It is well known that both methods suffer from domain size effects, especially for NEMD. But the underlying mechanisms and their comparison have not been much quantitatively studied before. In this paper, we investigate their domain size effects by using crystalline silicon at 1000 K, graphene at 300 K, and silicene at 300 K as model material systems. The thermal conductivity of silicon from EMD simulations increases normally with the increasing domain size and converges at a size of around 4×4×4 nm3. The converging trend agrees well with the wavelength-accumulated thermal conductivity. The thermal conductivities of graphene and silicene from EMD simulations decrease abnormally with the increasing domain size and converge at a size of around 10×10 nm2. We ascribe the anom...

Keywords: molecular dynamics; emd simulations; size; domain size; nonequilibrium molecular; thermal conductivities

Journal Title: Journal of Applied Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.