A series of novel all-metal sandwich species, [SbnAunSbn]m (n= 3, 4, 5, 6; m= -3, -2, -1, -2), are carefully designed and are systematically investigated in term of structure, bonding… Click to show full abstract
A series of novel all-metal sandwich species, [SbnAunSbn]m (n= 3, 4, 5, 6; m= -3, -2, -1, -2), are carefully designed and are systematically investigated in term of structure, bonding nature, stability, and potential application. These results show that [SbnAunSbn]m (n=3, 4, 5, 6; m= -3, -2, -1, -2), have local minimum values on their potential energy surfaces. For the Sb-Sb and Sb-Au bond, they are obviously covalent features, while in Au-Au, there is a typical aurophilic interaction. Furthermore, these species present expected stability owing to the positive dissociation energy, great Egap, ionization potential (IP), aromaticity and perfected mechanical stability. Interestingly, [Sb5Au5Sb5]- and [Sb6Au6Sb6]2- are aromatic, while both [Sb3Au3Sb3]3- and [Sb4Au4Sb4]2- possess conflicting aromaticity. And all the title species hold tube aromaticty and δ aromaticty. prediction The application suggests that the Sb site is favorable for absorbing CO in the units, and [Sb3Au3Sb3]3- is more suitable than others;...
               
Click one of the above tabs to view related content.