MoS2 nanostructures, i.e., nanoribbons, nano-mesh, etc., may open different prospect of applications in nano-electronic and opto-electronic devices and sensors. However, the fabrication of these complicated nanostructures can be executed by… Click to show full abstract
MoS2 nanostructures, i.e., nanoribbons, nano-mesh, etc., may open different prospect of applications in nano-electronic and opto-electronic devices and sensors. However, the fabrication of these complicated nanostructures can be executed by using standard nano-patterning techniques such as lithography, printing, etc. Nevertheless, these standard techniques involve affluent multistep processes to optimize scalability, form factors and accuracy in the feature size. Herein, we demonstrate the fabrication of unique nano-structures on MoS2, such as nano-ribbons and nano-mesh, by a simple one-step process of direct laser writing using 532 nm low power focused laser. The minimum power required to etch a MoS2 layer for a 532 nm laser is found to be ∼6.95 mW and the minimum void size observed is ∼300 nm, which is very close to the diffraction limit of the laser used. Both the experimental and computational results have shown that the voids induced by laser etching always take a hexagonal or triangular shape, which...
               
Click one of the above tabs to view related content.