LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal phase lag heterodyne infrared imaging for current tracking in radio frequency integrated circuits

Photo from wikipedia

With thermal phase lag measurements, current paths are tracked in a Class A radio frequency (RF) power amplifier at 2 GHz. The amplifier is heterodynally driven at 440 MHz and 2 GHz, and… Click to show full abstract

With thermal phase lag measurements, current paths are tracked in a Class A radio frequency (RF) power amplifier at 2 GHz. The amplifier is heterodynally driven at 440 MHz and 2 GHz, and its resulting thermal field was inspected, respectively, at 1013 and 113 Hz with an infrared lock-in thermography system. The phase lag maps evidence with a higher sensitivity than thermal amplitude measurements an input-output loop due to a substrate capacitive coupling. This limits the amplifier's performance, raising the power consumption in certain components. Other information relative to local power consumption and amplifier operation is also inferred. This approach allows the local non-invasive testing of integrated systems regardless of their operating frequency.

Keywords: radio frequency; lag; thermal phase; phase lag

Journal Title: Applied Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.