The interaction strength of molecular hydrogen and water to carbon nanomaterials is relevant to, among many applications, hydrogen storage, water treatment, and water flow. However, accurate interaction energies for hydrogen… Click to show full abstract
The interaction strength of molecular hydrogen and water to carbon nanomaterials is relevant to, among many applications, hydrogen storage, water treatment, and water flow. However, accurate interaction energies for hydrogen and water with carbon nanotubes (CNTs) remain scarce despite the importance of having reliable benchmark data to inform experiments and to validate computational models. Here, benchmark fixed-node diffusion Monte Carlo (DMC) interaction energies are provided for hydrogen and water monomers inside and outside a typical zigzag CNT. The DMC interaction energies provide valuable insight into molecular interactions with CNTs in general and are also expected to be particularly relevant to gas uptake studies on CNTs. In addition, a selection of density functional theory (DFT) exchange-correlation (xc) functionals and force field potentials that ought to be suitable for these systems is compared. An unexpected variation is found in the performance of DFT van der Waals (vdW) models in particul...
               
Click one of the above tabs to view related content.