LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of second-order nonlinearities in dielectric-semiconductor-dielectric metamaterials

Photo from wikipedia

We demonstrate a large effective second-order nonlinear optical susceptibility in electronic optical metamaterials based on sputtered dielectric-semiconductor-dielectric multilayers of silicon dioxide/amorphous silicon (a-Si)/aluminum oxide. The interfacial fixed charges (Qf) with… Click to show full abstract

We demonstrate a large effective second-order nonlinear optical susceptibility in electronic optical metamaterials based on sputtered dielectric-semiconductor-dielectric multilayers of silicon dioxide/amorphous silicon (a-Si)/aluminum oxide. The interfacial fixed charges (Qf) with opposite signs on either side of dielectric-semiconductor interfaces result in a non-zero built-in electric field within the a-Si layer, which couples to the large third-order nonlinear susceptibility tensor of a-Si and induces an effective second-order nonlinear susceptibility tensor χeff(2). The value of the largest components of the effective χeff(2) tensor, i.e., χ(2)zzz, is determined experimentally to be 2 pm/V for the as-fabricated metamaterials and increases to 8.5 pm/V after the post-thermal annealing process. The constituents and fabrication methods make these metamaterials CMOS compatible, enabling efficient nonlinear devices for chip-scale silicon photonic integrated circuits.

Keywords: order; second order; dielectric semiconductor; order nonlinear; semiconductor dielectric

Journal Title: Applied Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.