LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A complex-valued first integral of Navier-Stokes equations: Unsteady Couette flow in a corrugated channel system

Photo from wikipedia

For a two-dimensional incompressible viscous flow, a first integral of the governing equations of motion is constructed based on a reformulation of the unsteady Navier-Stokes equations in terms of complex… Click to show full abstract

For a two-dimensional incompressible viscous flow, a first integral of the governing equations of motion is constructed based on a reformulation of the unsteady Navier-Stokes equations in terms of complex variables and the subsequent introduction of a complex potential field; complementary solid and free surface boundary conditions are formulated. The methodology is used to solve the challenging problem of unsteady Couette flow between two sinusoidally varying corrugated rigid surfaces utilising two modelling approaches to highlight the versatility of the first integral. In the Stokes flow limit, the results obtained in the case of steady flow are found to be in excellent agreement with corresponding investigations in the open literature. Similarly, for unsteady flow, the results are in accord with related investigations, exploring material transfer between trapped eddies and the associated bulk flow, and vice versa. It is shown how the work relates to the classical complex variable method for solving the...

Keywords: couette flow; stokes equations; first integral; unsteady couette; navier stokes; flow

Journal Title: Journal of Mathematical Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.