We report a waveguiding excitation-based approach for surface-enhanced fluorescence. As high as 17-fold enhanced fluorescence intensity of Rhodamine 6G molecules is realized by gold nanoparticles embedded in polymer nanofibers. The… Click to show full abstract
We report a waveguiding excitation-based approach for surface-enhanced fluorescence. As high as 17-fold enhanced fluorescence intensity of Rhodamine 6G molecules is realized by gold nanoparticles embedded in polymer nanofibers. The enhancement results not only from the spatial confinement of light by the nanofibers but also from the wavelength match among the excitation laser, the localized surface plasmon resonance of nanoparticles, and the absorption band of dyes. On the basis of the enhancement and high-efficient waveguiding regime, the required excitation power for detectable fluorescence is decreased to the 20 nW level, which is about 50 times lower than that by free-space excitation. These fluorophore/nanoparticle-doped nanofibers may find applications in compact and energy-efficient optical devices of chemical analysis and biosensing.
               
Click one of the above tabs to view related content.