LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determination of the complex refractive index and optical bandgap of CH3NH3PbI3 thin films

Photo from wikipedia

We report the complex refractive index of methylammonium lead iodide (CH3NH3PbI3) perovskite thin films obtained by means of variable angle spectroscopic ellipsometry and transmittance/reflectance spectrophotometry in the wavelength range of… Click to show full abstract

We report the complex refractive index of methylammonium lead iodide (CH3NH3PbI3) perovskite thin films obtained by means of variable angle spectroscopic ellipsometry and transmittance/reflectance spectrophotometry in the wavelength range of 190 nm to 2500 nm. The film thickness and roughness layer thickness are determined by minimizing a global unbiased estimator in the region where the spectrophotometry and ellipsometry spectra overlap. We then determine the optical bandgap and Urbach energy from the absorption coefficient, by means of a fundamental absorption model based on band fluctuations in direct semiconductors. This model merges both the Urbach tail and the absorption edge regions in a single equation. In this way, we increase the fitting region and extend the conventional ( α ℏ ω ) 2-plot method to obtain accurate bandgap values.

Keywords: bandgap; thin films; optical bandgap; complex refractive; refractive index

Journal Title: Journal of Applied Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.