LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic properties and thermal stability of Co/HfN multilayer films for high-frequency application

Photo by younis67 from unsplash

Sputtered metal–nonmetal granular films tend to exhibit growth-induced perpendicular magnetic anisotropy. In this work, Co/HfN multilayers were synthesized to suppress the development of columnar clusters along the deposition direction. The… Click to show full abstract

Sputtered metal–nonmetal granular films tend to exhibit growth-induced perpendicular magnetic anisotropy. In this work, Co/HfN multilayers were synthesized to suppress the development of columnar clusters along the deposition direction. The results reveal that a HfN interlayer thickness of less than 0.4 nm is insufficient to separate the columnar clusters; however, increasing the interlayer thickness to 0.8 nm with increasing the sputtering duration successfully led to typical in-plane magnetic anisotropy with a coercivity as low as 3 Oe. The Co(4 nm)/HfN(1.5 nm) multilayers exhibited high permeability of approximately 260 up to 1.6 GHz. The resonance frequency increased from 1.8 to 2.3 GHz with increasing annealing temperature, which is attributed to the increased magnetic anisotropy. Our results suggest that the multilayers still show high-frequency performance even after annealing at 450 °C, which would be a big advantage for complementary metal–oxide–semiconductor (CMOS) fabrication technology.

Keywords: high frequency; frequency; magnetic properties; properties thermal; magnetic anisotropy; hfn

Journal Title: AIP Advances
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.