LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potentiality of delocalized states in indium-involved amorphous silicon oxide

Photo from academic.microsoft.com

In this short report, the specific molecular coacervate and two kinds of quantum states in indium-involved amorphous silicon oxide [a-SiOx(In)] are studied. The a-SiOx(In) layer is prepared by the magnetron… Click to show full abstract

In this short report, the specific molecular coacervate and two kinds of quantum states in indium-involved amorphous silicon oxide [a-SiOx(In)] are studied. The a-SiOx(In) layer is prepared by the magnetron sputtering process for indium tin oxide (ITO) films deposited on n-type silicon substrates, which has been predicted by molecular dynamics simulation and density function theory calculation. The results have been applied to the interpretation of the electronic structure and hole tunneling transport in ITO-SiOx/n-Si photovoltaic (PV) devices. The most significant achievement is that there is either a transition level at 0.30 eV for p-type conductive conversion or an extra level at Ev + 4.60 eV induced by In-O-Si bonding, denoted as molecular orbital levels, within the dielectric amorphous oxide (a-SiOx). The cognizance is crucial for the concepts of passivation, tunneling, selective contact, inversion, and useful defects in modern PV devices.

Keywords: indium involved; involved amorphous; potentiality delocalized; silicon oxide; states indium; amorphous silicon

Journal Title: Applied Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.