LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical properties of bimodally distributed InAs quantum dots grown on digital AlAs0.56Sb0.44 matrix for use in intermediate band solar cells

High-quality InAs quantum dots (QDs) with nominal thicknesses of 5.0–8.0 monolayers were grown on a digital AlAs0.56Sb0.44 matrix lattice-matched to the InP(001) substrate. All QDs showed bimodal size distribution, and… Click to show full abstract

High-quality InAs quantum dots (QDs) with nominal thicknesses of 5.0–8.0 monolayers were grown on a digital AlAs0.56Sb0.44 matrix lattice-matched to the InP(001) substrate. All QDs showed bimodal size distribution, and their optical properties were investigated by photoluminescence (PL) and time-resolved PL measurements. Power dependent PL exhibited a linear relationship between the peak energy and the cube root of the excitation power for both the small QD family (SQDF) and the large QD family (LQDF), which is attributed to the type-II transition. The PL intensity, peak energy, and carrier lifetime of SQDF and LQDF showed very sensitive at high temperature. Above 125 K, the PL intensity ratio increased continuously between LQDF and SQDF, the peak energy shifted anomalously in SQDF, and the longer carrier radiative lifetime (≥3.0 ns at 77 K) reduced rapidly in SQDF and slowly in LQDF. These results are ascribed to thermally activated carrier escape from SQDF into the wetting layer, which then relaxed into...

Keywords: digital alas0; alas0 56sb0; grown digital; inas quantum; 56sb0 matrix; quantum dots

Journal Title: Journal of Applied Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.