LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy

Photo from wikipedia

Scattering-type scanning near-field optical microscopy (s-SNOM) enables mapping of nanoscale field distributions in two dimensions. However, the standard s-SNOM technique lacks direct resolving ability along the vertical direction, therefore unable… Click to show full abstract

Scattering-type scanning near-field optical microscopy (s-SNOM) enables mapping of nanoscale field distributions in two dimensions. However, the standard s-SNOM technique lacks direct resolving ability along the vertical direction, therefore unable to provide full three-dimensional near-field responses. Here, we develop a reconstruction technique that enables s-SNOM to collect a three-dimensional response cube of near-field interaction. The technique also allows a new operational mode of s-SNOM based on the characteristic decay range of near-field interactions. As a demonstration, the bound near-field at the sides of a polaritonic boron nitride nanotube is revealed through the collection of the near-field response cube. The graphene boundary and discontinuities are revealed by the near-field decay range mapping. The reconstruction s-SNOM technique extends the capability of s-SNOM and is generally applicable for a wide range of nanoscale characterizations that are suitable for s-SNOM, such as characterizat...

Keywords: three dimensional; microscopy; snom; field; scattering type; near field

Journal Title: AIP Advances
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.