LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of postdeposition heat treatment on the structural and magnetic properties of CoFe2O4 nanoparticles produced by pulsed laser deposition

Photo by schluditsch from unsplash

In this work, we investigated the effects of postdeposition heat treatment on structural and magnetic properties of CoFe2O4 nanoparticles produced by pulsed laser deposition. Structural analysis by X-ray diffraction, transmission… Click to show full abstract

In this work, we investigated the effects of postdeposition heat treatment on structural and magnetic properties of CoFe2O4 nanoparticles produced by pulsed laser deposition. Structural analysis by X-ray diffraction, transmission electron microscopy (TEM) and Mossbauer spectroscopy indicate the formation of a single phase cobalt ferrite nanoparticles with the size ranging from 4.3 to 33.3 nm depending on the annealing temperature. The magnetic properties of the samples were investigated in a wide temperature range (50–400 K). Noticeable effects of the cubic magnetocrystalline anisotropy on the magnetization process of nanoparticles were observed for samples annealed at 450 °C and 600 °C, while for samples as-deposited and annealed at 300 °C the magnetization properties were dominated by a uniaxial effective anisotropy. ΔM technique was used to investigate the magnetic interaction among the nanoparticles. Only demagnetizing interactions were observed for the sample annealed up to 300 °C, while for the samp...

Keywords: postdeposition heat; heat treatment; structural magnetic; effects postdeposition; magnetic properties; treatment structural

Journal Title: Journal of Applied Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.