LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optoelectronics of inverted type-I CdS/CdSe core/crown quantum ring

Photo by ashtonmullins from unsplash

Inverted type-I heterostructure core/crown quantum rings (QRs) are quantum-efficient luminophores, whose spectral characteristics are highly tunable. Here, we study the optoelectronic properties of type-I core/crown CdS/CdSe QRs in the zincblende… Click to show full abstract

Inverted type-I heterostructure core/crown quantum rings (QRs) are quantum-efficient luminophores, whose spectral characteristics are highly tunable. Here, we study the optoelectronic properties of type-I core/crown CdS/CdSe QRs in the zincblende phase—over contrasting lateral size and crown width. For this, we inspect their strain profiles, transition energies, transition matrix elements, spatial charge densities, electronic bandstructures, band-mixing probabilities, optical gain spectra, maximum optical gains, and differential optical gains. Our framework uses an effective-mass envelope function theory based on the 8-band k ⋅ p method employing the valence force field model for calculating the atomic strain distributions. The gain calculations are based on the density-matrix equation and take into consideration the excitonic effects with intraband scattering. Variations in the QR lateral size and relative widths of core and crown (ergo the composition) affect their energy levels, band-mixing probabiliti...

Keywords: cds cdse; optoelectronics inverted; core crown; crown quantum; inverted type

Journal Title: Journal of Applied Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.