LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biaxially stretchable carbon nanotube transistors

Photo from academic.microsoft.com

Biaxially stretchable field effect transistors (FETs) fabricated on elastomeric substrates are demonstrated incorporating a buckled network of polymer-wrapped semiconducting carbon nanotubes in the channel and a buckled layer of an… Click to show full abstract

Biaxially stretchable field effect transistors (FETs) fabricated on elastomeric substrates are demonstrated incorporating a buckled network of polymer-wrapped semiconducting carbon nanotubes in the channel and a buckled layer of an ion gel as the gate dielectric. The FETs maintain an on/off ratio of >104 and a field-effect mobility of >5 cm2 V−1 s−1 for biaxial elongation up to 67% or uniaxial elongation either parallel or perpendicular to the channel. The performance is stable for at least 10 000 stretch-release cycles. Failure analysis shows that the extent of elongation is limited only by the magnitude of the pre-strain used during fabrication. This work is important because deformable FETs are needed for future technologies including stretchable electronics and displays.

Keywords: stretchable carbon; biaxially stretchable; carbon; nanotube transistors; carbon nanotube; elongation

Journal Title: Journal of Applied Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.