We report the band structures and excitonic properties of delafossites CuMO2 (M=Al, Ga, In, Sc, Y, Cr) calculated using the state-of-the-art GW-BSE approach. We evaluate different levels of self-consistency of… Click to show full abstract
We report the band structures and excitonic properties of delafossites CuMO2 (M=Al, Ga, In, Sc, Y, Cr) calculated using the state-of-the-art GW-BSE approach. We evaluate different levels of self-consistency of the GW approximations, namely G0W0, GW0, GW, and QSGW, on the band structures and find that GW0, in general, predicts the band gaps in better agreement with experiments considering the electron-hole effect. For CuCrO2, the HSE wave function is used as the starting point for the perturbative GW0 calculations, since it corrects the band orders wrongly predicted by PBE. The discrepancy about the valence band characters of CuCrO2 is classified based on both HSE and QSGW calculations. The PBE wave functions, already good, are used for other delafossites. All the delafossites are shown to be indirect band gap semiconductors with large exciton binding energies, varying from 0.24 to 0.44 eV, in consistent with experimental findings. The excitation mechanisms are explained by examining the exciton amplitude ...
               
Click one of the above tabs to view related content.