LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Emergence of ferrimagnetic half-metallicity in two-dimensional MXene Mo3N2F2

Photo from wikipedia

Ferrimagnetic half-metal is more promising in spintronic devices than its ferromagnetic counterpart due to its lower stray fields and favorable robustness of magnetism. In comparison to the three-dimensional counterpart, the… Click to show full abstract

Ferrimagnetic half-metal is more promising in spintronic devices than its ferromagnetic counterpart due to its lower stray fields and favorable robustness of magnetism. In comparison to the three-dimensional counterpart, the realization on two-dimensional ferrimagnetic half-metal remains blank up to date. Here, based on first-principles calculations and Monte Carlo simulations, we predict a ferrimagnetic half-metallicity in two-dimensional MXene Mo3N2F2 with a Curie temperature of 237 K and a considerable magnetic anisotropy energy. The ferrimagnetic coupling is mainly from the interactions of itinerant d electron between different Mo layers, and thus endows a 100% spin-polarization at the Fermi level with a sizable half-metallic gap of 0.47 eV. Such ferrimagnetic half-metallicity is also robust against external strains. Additionally, diverse magnetic and electronic characters can be controlled, depending on a differently terminated Mo3N2F2 surface. These findings provide an ideal platform to design spint...

Keywords: metallicity two; half metallicity; ferrimagnetic half; two dimensional; half

Journal Title: Applied Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.