LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High photoresponsivity from multilayer MoS2/Si heterojunction diodes formed by vertically stacking

Photo from wikipedia

We investigated a vertically stacked p+-n heterojunction diode consisting of a two-dimensional (2D) molybdenum disulfide (MoS2) crystal and a heavily doped p+-type Si substrate. The MoS2 flakes are transferred onto… Click to show full abstract

We investigated a vertically stacked p+-n heterojunction diode consisting of a two-dimensional (2D) molybdenum disulfide (MoS2) crystal and a heavily doped p+-type Si substrate. The MoS2 flakes are transferred onto p+-Si substrates by using a scotch tape-based exfoliation method. The performances of n-MoS2/p+-Si diodes are investigated by I-V measurement under light illumination using light emitting diodes with various wavelengths. It appears that multilayer MoS2 has sufficient thickness to absorb incident light from the visible to near-infrared range with a high sensitivity. With the advantages of a simple device structure as well as improved contact quality between the MoS2 and silicon interface, an ideality factor of 1.09 can be achieved. The diodes reveal an ultra-high photoresponsivity of about 980 A/W at a wavelength of 525 nm with a strong dependence on the light wavelength and intensity, while they show a high specific detectivity on the order of 109 cm·Hz1/2/W from the visible to near infrared sp...

Keywords: high photoresponsivity; mos2; photoresponsivity multilayer; heterojunction; multilayer mos2

Journal Title: Journal of Applied Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.