LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physically based DC lifetime model for lead zirconate titanate films

Photo by bondomovies from unsplash

Accurate lifetime predictions for Pb(Zr0.52Ti0.48)O3 thin films are critical for a number of applications, but current reliability models are not consistent with the resistance degradation mechanisms in lead zirconate titanate.… Click to show full abstract

Accurate lifetime predictions for Pb(Zr0.52Ti0.48)O3 thin films are critical for a number of applications, but current reliability models are not consistent with the resistance degradation mechanisms in lead zirconate titanate. In this work, the reliability and lifetime of chemical solution deposited (CSD) and sputtered Pb(Zr0.52Ti0.48)O3 thin films are characterized using highly accelerated lifetime testing (HALT) and leakage current-voltage (I-V) measurements. Temperature dependent HALT results and impedance spectroscopy show activation energies of approximately 1.2 eV for the CSD films and 0.6 eV for the sputtered films. The voltage dependent HALT results are consistent with previous reports, but do not clearly indicate what causes device failure. To understand more about the underlying physical mechanisms leading to degradation, the I-V data are fit to known conduction mechanisms, with Schottky emission having the best-fit and realistic extracted material parameters. Using the Schottky emission equati...

Keywords: lead zirconate; physically based; lifetime; zirconate titanate

Journal Title: Applied Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.