LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phase interferometric particle imaging for simultaneous measurements of evaporating micron-sized droplet and nanoscale size changes

Photo from wikipedia

We have developed phase interferometric particle imaging (PHIPI) of Mie scattering to simultaneously measure the spherical and transparent droplet size at the micron scale and transient size changes at the… Click to show full abstract

We have developed phase interferometric particle imaging (PHIPI) of Mie scattering to simultaneously measure the spherical and transparent droplet size at the micron scale and transient size changes at the nanoscale. The theoretical derivation of PHIPI reveals that the phase of interferometric fringes between direct transmission and reflection linearly shifts with the change in droplet size. After a proof-of-concept validation with simulation, a PHIPI system is then implemented with an elaborately designed Fourier imaging system and applied to measure single evaporating droplets of ethanol and n-Nonane. The results show that the PHIPI technique can determine the size change down to several nanometers, providing a powerful tool for accurate in-situ characterization of droplet dynamics, e.g., droplet evaporation and oscillation.

Keywords: size; size changes; particle imaging; phase interferometric; interferometric particle

Journal Title: Applied Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.