This paper presents research data on cathodoluminescence, photoluminescence, and Cherenkov radiation at 200–800 nm excited in crystals with different refractive indices by a subnanosecond runaway electron beam and by KrCl excilamp… Click to show full abstract
This paper presents research data on cathodoluminescence, photoluminescence, and Cherenkov radiation at 200–800 nm excited in crystals with different refractive indices by a subnanosecond runaway electron beam and by KrCl excilamp radiation with a peak wavelength of 222 nm. The data include spectral and amplitude-time characteristics measured with a resolution of up to ∼100 ps for natural and synthetic diamonds of type IIa, sapphire, CsI, ZnS, CaF2, ZrO2, Ga2O3, CaCO3, CdS, and ZnSe. The research suggests that cathodoluminescence and photoluminescence should be accounted for in Cherenkov-type detectors of runaway electrons. The results can be useful for detecting high-energy electrons in tokamaks.
               
Click one of the above tabs to view related content.