LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vortex-crossing-induced timing jitter of superconducting nanowire single-photon detectors

Photo by mero_dnt from unsplash

We investigate the timing properties of single-photon-triggered vortex (or anti-vortex) crossing in a current-biased superconducting nanowire and find that the time delays caused in the vortex-crossing process vary with the… Click to show full abstract

We investigate the timing properties of single-photon-triggered vortex (or anti-vortex) crossing in a current-biased superconducting nanowire and find that the time delays caused in the vortex-crossing process vary with the transverse positions on the nanowire where the photons are absorbed. The position-dependent time delays indicate that the vortex-crossing process induces timing jitter of a superconducting nanowire single-photon detector (SNSPD). The magnitude of this timing jitter further depends on various parameters, including the polarization of the incident photon, the bias current, and the width of the nanowire. This vortex-crossing-induced timing jitter might represent the lower bound of the timing jitter of the SNSPD and fundamentally limit its time-resolving capability.

Keywords: single photon; vortex crossing; superconducting nanowire; timing jitter

Journal Title: Applied Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.