LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transport and spatial energy deposition of relativistic electrons in copper-doped fast ignition plasmas

Photo from wikipedia

Fast electron transport and spatial energy deposition are investigated in integrated cone-guided Fast Ignition experiments by measuring fast electron induced copper K-shell emission using a copper tracer added to deuterated… Click to show full abstract

Fast electron transport and spatial energy deposition are investigated in integrated cone-guided Fast Ignition experiments by measuring fast electron induced copper K-shell emission using a copper tracer added to deuterated plastic shells with a geometrically reentrant gold cone. Experiments were carried out at the Laboratory for Laser Energetics on the OMEGA/OMEGA-EP Laser where the plastic shells were imploded using 54 of the 60 OMEGA60 beams (3ω, 20 kJ), while the high intensity OMEGA-EP (BL2) beam (1 ω, 10 ps, 500 J, Ipeak > 1019 W/cm2) was focused onto the inner cone tip. A retrograde analysis using the hybrid-PIC electron transport code, ZUMA, is performed to examine the sensitivity of the copper Kα spatial profile on the laser-produced fast electrons, facilitating the optimization of new target point designs and laser configurations to improve the compressed core areal density by a factor of 4 and the fast electron energy coupling by a factor of 3.5.

Keywords: spatial energy; energy; fast ignition; copper; energy deposition; transport spatial

Journal Title: Physics of Plasmas
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.