P-N diodes can be emulated in ultrathin, fully depleted Silicon-On-Insulator films by appropriately biasing the front and back gates. Adjacent electron and hole populations form a virtual P-N junction. Systematic… Click to show full abstract
P-N diodes can be emulated in ultrathin, fully depleted Silicon-On-Insulator films by appropriately biasing the front and back gates. Adjacent electron and hole populations form a virtual P-N junction. Systematic current-voltage I-V characteristics are presented revealing similarities and major differences with those of conventional P-N diodes with ion-implanted doping. The lateral electric field from the anode combines with the gate-induced vertical field and leads to unusual two-dimensional effects. A distinct merit of the virtual diode is the possibility to adjust the concentrations of electrostatic doping via the gates. The reverse current, forward current, and depletion depth become gate-controlled. Our experiments show that by modifying the type, N or P, of electrostatic doping, the virtual diode can be reconfigured in 8 other devices: semi-virtual diodes, PIN diodes, tunneling field-effect transistors or band-modulation FET.
               
Click one of the above tabs to view related content.