LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Probing material conductivity in two-terminal devices by resistance difference

Photo from wikipedia

It is generally impossible in two-terminal devices to separate the resistance of the device material from the parasitic resistance of terminals, interfaces, and serial loads, yet such information is needed… Click to show full abstract

It is generally impossible in two-terminal devices to separate the resistance of the device material from the parasitic resistance of terminals, interfaces, and serial loads, yet such information is needed to understand device physics. Here, we present an exact resistance-difference analysis, for a library of similarly configured two-terminal devices with self-similar material responses to external perturbations (electric current, temperature, and magnetic field), to obtain the relative conductivity change Δσ/σ in the device material using device-resistance data only. An outstanding example is nanometallic Mo/Si3N4:Pt/Pt resistance memory, in which electrons in Si3N4:Pt—the device material—display entirely different physics from those in the Pt and Mo electrodes. Our method unraveled their individual Δσ/σ, which for Si3N4:Pt exhibits self-similarity over different resistance states and film thicknesses.

Keywords: resistance difference; physics; resistance; terminal devices; two terminal; device

Journal Title: Applied Physics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.