LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of CoFeB thickness in electric field controlled sub-100 nm sized magnetic tunnel junctions

Photo by glenncarstenspeters from unsplash

We report a comprehensive study on the role of the free layer thickness (tF) in electric-field controlled nanoscale perpendicular magnetic tunnel junctions (MTJs), comprising of free layer structure Ta/Co40Fe40B20/MgO, by… Click to show full abstract

We report a comprehensive study on the role of the free layer thickness (tF) in electric-field controlled nanoscale perpendicular magnetic tunnel junctions (MTJs), comprising of free layer structure Ta/Co40Fe40B20/MgO, by using dc magnetoresistance and ultra-short magnetization switching measurements. Focusing on MTJs that exhibits positive effective device anisotropy (Keff), we observe that both the voltage-controlled magnetic anisotropy (ξ) and voltage modulation of coercivity show strong dependence on tF. We found that ξ varies dramatically and unexpectedly from ∼−3 fJ/V-m to ∼−41 fJ/V-m with increasing tF. We discuss the possibilities of electric-field tuning of the effective surface anisotropy term, KS as well as an additional interfacial magnetoelastic anisotropy term, K3 that scales with 1/tF2. Voltage pulse induced 180° magnetization reversal is also demonstrated in our MTJs. Unipolar switching and oscillatory function of switching probability vs. pulse duration can be observed at higher tF, and a...

Keywords: field controlled; tunnel junctions; magnetic tunnel; field; thickness electric; electric field

Journal Title: AIP Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.