LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. We find that… Click to show full abstract

In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. We find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substrate preparation. These findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. We find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substrate preparation. These findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.

Keywords: laser; direct write; geometry; manufacturing; substrate

Journal Title: Applied Physics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.