LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural, vibrational, and electronic topological transitions of Bi1.5Sb0.5Te1.8Se1.2 under pressure

Photo by des0519 from unsplash

Topological insulators have been the subject of intense research interest due to their unique surface states that are topologically protected against scattering or defects. However, the relationship between the crystal… Click to show full abstract

Topological insulators have been the subject of intense research interest due to their unique surface states that are topologically protected against scattering or defects. However, the relationship between the crystal structure and topological insulator state remains to be clarified. Here, we show the effects of hydrostatic pressure on the structural, vibrational, and topological properties of the topological insulator Bi1.5Sb0.5Te1.8Se1.2 up to 45 GPa using X-ray diffraction and Raman spectroscopy in a diamond anvil cell, together with first-principles theoretical calculations. Two pressure-induced structural phase transitions were observed: from ambient rhombohedral R 3¯m phase to a monoclinic C2/m phase at ∼13 GPa, and to a disordered I4/mmm phase at ∼22 GPa. In addition, the alloy undergoes several electronic transitions within the R 3¯m phase: indirect to direct bulk band gap transition at ∼5.8 GPa, bulk gap closing with an appearance of Dirac semimetal (DSM) state at ∼8.2 GPa, and to a trivial semimetal state at ∼12.1 GPa. Anomalies in c/a ratio and Raman full width at half maximum that coincide with the DSM phase suggest the contribution of electron-phonon coupling to the transition. Compared to binary end members Bi2Te3, Bi2Se3, and Sb2Te3, the structural phase transition and anomaly were observed at higher pressures in Bi1.5Sb0.5Te1.8Se1.2. These results suggest that the topological transitions are precursors to the structural phase transitions.Topological insulators have been the subject of intense research interest due to their unique surface states that are topologically protected against scattering or defects. However, the relationship between the crystal structure and topological insulator state remains to be clarified. Here, we show the effects of hydrostatic pressure on the structural, vibrational, and topological properties of the topological insulator Bi1.5Sb0.5Te1.8Se1.2 up to 45 GPa using X-ray diffraction and Raman spectroscopy in a diamond anvil cell, together with first-principles theoretical calculations. Two pressure-induced structural phase transitions were observed: from ambient rhombohedral R 3¯m phase to a monoclinic C2/m phase at ∼13 GPa, and to a disordered I4/mmm phase at ∼22 GPa. In addition, the alloy undergoes several electronic transitions within the R 3¯m phase: indirect to direct bulk band gap transition at ∼5.8 GPa, bulk gap closing with an appearance of Dirac semimetal (DSM) state at ∼8.2 GPa, and to a trivial semi...

Keywords: phase; bi1 5sb0; 5te1 8se1; 5sb0 5te1; gpa; pressure

Journal Title: Journal of Applied Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.