LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer

Photo by andresurena from unsplash

Optical interferometers are powerful tools for studying the flexural vibrations of nano- and micro-mechanical resonators. When a cantilevered microwire vibrates along a direction away from the optical axis, the interference… Click to show full abstract

Optical interferometers are powerful tools for studying the flexural vibrations of nano- and micro-mechanical resonators. When a cantilevered microwire vibrates along a direction away from the optical axis, the interference signal may not be optimal for detecting its vibrations. In this work, we identify the optimal locations for detecting the vibrations of a cantilevered microwire using a micro-lens fiber-optic interferometer. We take both the interference effect and the scattering effect of the microwire into account. Using a home-built interferometer, we verify the analysis by measuring a cantilevered microwire driven in various directions with respect to the optical axis. Our results show that the optimal detecting location strongly depends on the orientation of the vibrations. Based on this observation, we inferred the orientations of the flexural vibrational modes of two cantilevered microwires. Our results may be useful in studying the flexural vibration modes of cantilevered microwires and their applications in detecting vectorial forces.Optical interferometers are powerful tools for studying the flexural vibrations of nano- and micro-mechanical resonators. When a cantilevered microwire vibrates along a direction away from the optical axis, the interference signal may not be optimal for detecting its vibrations. In this work, we identify the optimal locations for detecting the vibrations of a cantilevered microwire using a micro-lens fiber-optic interferometer. We take both the interference effect and the scattering effect of the microwire into account. Using a home-built interferometer, we verify the analysis by measuring a cantilevered microwire driven in various directions with respect to the optical axis. Our results show that the optimal detecting location strongly depends on the orientation of the vibrations. Based on this observation, we inferred the orientations of the flexural vibrational modes of two cantilevered microwires. Our results may be useful in studying the flexural vibration modes of cantilevered microwires and their a...

Keywords: microwire; flexural vibrations; vibrations cantilevered; micro lens; lens fiber; cantilevered microwire

Journal Title: Applied Physics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.