LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Drift-wave observation in a toroidal magnetized plasma and comparison with a modified Hasegawa-Wakatani model

Photo from wikipedia

This paper presents the results of fluctuation measurements in a toroidal magnetized plasma, using Langmuir probes, and comparisons between the observed frequency modes and a Hasegawa-Wakatani model including curvature, adapted… Click to show full abstract

This paper presents the results of fluctuation measurements in a toroidal magnetized plasma, using Langmuir probes, and comparisons between the observed frequency modes and a Hasegawa-Wakatani model including curvature, adapted to the specifics of the toroidal device. More precisely, two kinds of signals are detected in the presence of an additional vertical magnetic field in the region of significant density and potential gradients. A high frequency, propagating component, corresponding to dissipative drift-waves in the curved magnetic field, is observed and the frequency and typical wavelengths are found to be in good agreement with the linear Hasegawa-Wakatani model including curvature effects. A second, low frequency component is observed at lower frequencies and is shown to correspond to large scale vertical electrostatic field structures. A significantly high level of cross correlation is observed between these two signals, with an identifiable time delay, which suggests an analogy to the time delay...

Keywords: drift; wakatani model; hasegawa wakatani; toroidal magnetized; magnetized plasma

Journal Title: Physics of Plasmas
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.