LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

Photo from wikipedia

A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect… Click to show full abstract

A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS) investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS) investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

Keywords: thin films; probing molecular; spectroscopy; ray photoelectron; photoelectron spectroscopy

Journal Title: AIP Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.