LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inelastic light scattering from plasmons tunneling between Wannier-Stark states

Photo from wikipedia

Using inelastic light scattering, we measure the zone-center electronic excitation modes in a set of multiple quantum wells. The width of the wavefunction barriers was chosen such that it prevents… Click to show full abstract

Using inelastic light scattering, we measure the zone-center electronic excitation modes in a set of multiple quantum wells. The width of the wavefunction barriers was chosen such that it prevents significant coupling of the electron ground states between wells yet is transparent to electron tunneling under an electric field. Under these conditions, we find charge-density-like and spin-density-like plasmons whose energies do not correspond to the excitations calculated for either a single well or a set of Coulomb-coupled wells. The observed energies are proportional to the electric field strength and the lower energy modes agree with predictions for plasmons tunneling between the Wannier-Stark ladder states.Using inelastic light scattering, we measure the zone-center electronic excitation modes in a set of multiple quantum wells. The width of the wavefunction barriers was chosen such that it prevents significant coupling of the electron ground states between wells yet is transparent to electron tunneling under an electric field. Under these conditions, we find charge-density-like and spin-density-like plasmons whose energies do not correspond to the excitations calculated for either a single well or a set of Coulomb-coupled wells. The observed energies are proportional to the electric field strength and the lower energy modes agree with predictions for plasmons tunneling between the Wannier-Stark ladder states.

Keywords: inelastic light; plasmons tunneling; tunneling wannier; wannier stark; light scattering; electric field

Journal Title: Journal of Applied Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.