LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrating AlInN interlayers into InGaN/GaN multiple quantum wells for enhanced green emission

Photo from wikipedia

Significant enhancement in green emission by integrating a thin AlInN barrier layer, or interlayer (IL), in an InGaN/GaN multiple quantum well (MQW) is demonstrated. The MQWs investigated here contains 5… Click to show full abstract

Significant enhancement in green emission by integrating a thin AlInN barrier layer, or interlayer (IL), in an InGaN/GaN multiple quantum well (MQW) is demonstrated. The MQWs investigated here contains 5 periods of an InGaN QW, a 1 nm thick AlInN IL, and a 10 nm thick GaN barrier grown by metalorganic chemical vapor deposition. To accommodate the optimum low-pressure (20 Torr) growth of the AlInN layer a growth flow sequence with changing pressure is devised. The AlInN IL MQWs are compared to InGaN/AlGaN/GaN MQWs (AlGaN IL MQWs) and conventional InGaN/GaN MQWs. The AlInN IL MQWs provide benefits that are similar to AlGaN ILs, by aiding in the formation of abrupt heterointerfaces as indicated by X-ray diffraction omega-2theta (ω-2θ) scans, and also efficiency improvements due to high temperature annealing schedules during barrier growth. Room temperature photoluminescence of the MQW with AlInN ILs shows similar performance to MQWs with AlGaN ILs, and ∼4–7 times larger radiative efficiency (pump intensity d...

Keywords: gan multiple; multiple quantum; ingan gan; green emission; mqws

Journal Title: Applied Physics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.