LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer

Photo from wikipedia

Silver nanoparticles (Ag NPs) and the titanium dioxide (TiO2) dielectric layer produced by magnetron sputtering and subsequent annealing treatment, were integrated at the front side of crystalline silicon (c-Si) solar… Click to show full abstract

Silver nanoparticles (Ag NPs) and the titanium dioxide (TiO2) dielectric layer produced by magnetron sputtering and subsequent annealing treatment, were integrated at the front side of crystalline silicon (c-Si) solar cells. A photovoltaic device was realized based on the c-Si substrate and stacked Ag NPs/TiO2/n/p/Ag layer. The results show that the energy conversion efficiency (ECE) can be improved by 9.9% with the introduction of well-sized Ag NPs and an ultrathin TiO2 dielectric layer to the c-Si solar cells. The presence of the dielectric layer enables Ag NPs to fully exert the advantage of localized surface plasmon resonance (LSPR) and light scattering, and the recombination of the photogenerated carriers originating from Ag NPs is effectively avoided at the surface or in the vicinity of Ag NPs. Moreover, COMSOL Multiphysics simulations were performed to investigate the reflection and absorption of incident light in the c-Si. The simulation results match well with the experimental data.Silver nanoparticles (Ag NPs) and the titanium dioxide (TiO2) dielectric layer produced by magnetron sputtering and subsequent annealing treatment, were integrated at the front side of crystalline silicon (c-Si) solar cells. A photovoltaic device was realized based on the c-Si substrate and stacked Ag NPs/TiO2/n/p/Ag layer. The results show that the energy conversion efficiency (ECE) can be improved by 9.9% with the introduction of well-sized Ag NPs and an ultrathin TiO2 dielectric layer to the c-Si solar cells. The presence of the dielectric layer enables Ag NPs to fully exert the advantage of localized surface plasmon resonance (LSPR) and light scattering, and the recombination of the photogenerated carriers originating from Ag NPs is effectively avoided at the surface or in the vicinity of Ag NPs. Moreover, COMSOL Multiphysics simulations were performed to investigate the reflection and absorption of incident light in the c-Si. The simulation results match well with the experimental data.

Keywords: silver nanoparticles; crystalline silicon; tio2 dielectric; dielectric layer; layer; ultrathin tio2

Journal Title: AIP Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.